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NATIONAL ADVISORY CCWITTEE FOR
.

RESM.RCH MEMoRAmuM

AERONAUTICS

LIWZD-l?UIL—DISTRIIWTION AND FUEL-STATE EFFECTS ON C@BUSTION

FEE?OWCE OF A SINGLE TUBULAR C?CM3USTOR

By Richard J. McCafferty

An investigation was conducted to study the effects of liquid-
fuel distribution on conkmstion performance of a single turbojet-
engine conilmstoroperating with liquid MIL-F-5624 fuel,. The MIL-F-5624
fuel was injected with shplex and duplex pressure-atomizing nozzles
and four solid-stream fuel distributors. Altitude operational limits
‘andattendant cmibustion efficiencies and the effects of cotiustor
inlet-air variables on codmstion efficiency were determined. Gaseous-
fuel-distribution data were available fr~ a previous investigation
for the same combustor and, hence)the effect of fuel state on perform-
ance was obtained by comparison.

Distribution of liquid fuel within the primary ccmimstion zone
of the ccmbustor affects altitude operational limits snd cailmstion
efficiency but to a lesser degree than does gaseous-fuel distri-
bution. Gaseous fiel provided higher altitude operational limits
smd efficiencies than liquid fuel.

*

INTRODUCTION

Research is being conducted at the NACA Lewis laboratory to
obtain information on the rektive importance of various factors s
affecting the sltitude performance of ccmkmstors for aircraft tur-
bine engines. Part of this research is intended ta pr~ide informa-
tion on the ccmimstion ch~cteristics of liquid end vapor hydro-
carbon fuels end particularly to show whether vapor fuels have
inherently better characteristicsthan liquid fuels when injected
into a cmbustor operating at altitudes where the inlet-air condi-
tions are adverse to conkmstion.

*
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Previuus reports (references1 and 2) show that liquid-fuel com-
bustion is detrtientell.yaffected by increasing altitude. This

—
●

eltitude effect is, in pert, attributed to the lack of rapid attain-
ment of prop= fuel-air mixtures in the primary conibustionzone at
high-altitude conditions. In these cmilmstors, the fuel was injected P

by pressure-atomizingnozzles end vaporization occurred from the sur- B

face of the liqtid-fuel droplets so formed.- In this manner the liquid
fuel was distributed, vaporized, and mixed yith air before conibustion
occurred. Quenchingby dilution air Mmitedthe residence time avail-
able for complete ccmibustim.

Vapor fuel should provide a combustible fuel-air mixture in the
prhnary conibustionzone more rapidly than liquid fuel because the time
requirement of vaporization is eliminated. Consequently, the com-
bustion performance of vapar fuel should be superia because the fuel
enjoys a longer residence time in the conibustionzone while in the
vapor state.

IIIorder to draw any cmclusions regarding the importance of fuel
state, the effect-of fuel distributionwith both liquid and vapor fuels

~—

must first be appraised. A previous repcmt (reference3) presents the
results of an investigation concerning the effect of fuel-air distri-
bution on conibustim characteristicswith vapor fuel. The present

m

report presents data showing the effect of liquid fuel distribution on
combustion performance. The data were obtainedby op=ation of a single
tubular combustor with liquid MIL-F-5624 fuel, and v=iation in fuel
distribution in the caibustion zone was accomplishedby the use of six
fuel-injector designs. The ccaiknzstimcharacteristicswere evaluated

9 by (1) deterndming the altitude operational limits and attendant com-
bustion efficiencies,tid (2) determining the effects of inlet-air
presdure, temperature, md velocity on ccmibustionefficiency at stand-
ard inlet-air conditions.of 620° R and M puunds per square inch

—

absolute. The liqyld-fuel performance so determined is compared with
the previously repcm.%edgaieous-fuelperformance. Observations regard-
ing the csrbon-f- tendencies, stability, sad ignitim characterist-
ics are also included.

APPARATUS AND IIW3TRWE!WWION

Eqy.ipmea.t

The investigationswere ccmducted in a si@.e conimstm from a
J35-C-3 turbojet engine. The cmbust ac was connected to the laboratcu’y
air supply, as shown diagrammt ically in figure 1; air qyantity

—.

.

.



NACA RM E51S21 3
.

and pressure were regulated by remote-control valves upstream and down-
● stream of the ccmibustor. The desired inlet-air temperature was obtained

by burning a portion of the air with gasoline in a preheater and then
~ it -X tith the rest of the air upstresm of the cmbustor.

% The effect on the constituents of the inlet air due to the added products

G of ccmibustionis discussed in reference 1. The exhaust gases were cooled
by water sprays in the exhqust ducting.

The ccmibustor-inlet section and the ccmknzstor itsdlf were furnished
by the manufacturer. The inlet and outlet ducts were fabricated to
simulate the dimensions and contours of corresponding engine ducts. The
ccmibustorouter WW was reinfmced with metal buds to eliminate struc-
tural failure at the low interior pressures investigated. Observatkm
windows were located axially along the ccmbustor to permit visua+ obser-
vation of ccmibustion.

Instrumentation

The number of instruments at each of the instrumentationplanes
shown in figure 1 are as follows:

Type of instrument Instrumentationplane
2 3 4 5

One-thermocouplerake 2 3
Three-tube total-pressure rske 3
Five-thermocouple rake 7
Five-tube total-pressure rske 7
Statit-pressure orifice 1 1 1

All temperature and total-pressure measurements were taken at the
centers of eqti areas. Instrumentalion plane 2 is located at the ccm-
bustor inlet, which has a cross-sectional area of 0.159 square fret;
tistrumentationplane 3 is at the conibustor outlet, where the cross-
sectional area 3s 0.262 square foot. ‘Locationsof the points of mea-
surement at the respective instrumentationplanes are shown in figure 2,
and the instrumentation details are shown in figure 3. Air-flow rate
was metered by a square-edge orifice installed according to A.S.M.E.
specifications;temperatures were indicated by self-balancingpoten-
tiometers; and liquid-fuel flow rate was indicated by a calibrated
rotameter.

.
,

*
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Fuel and Fuel bjectom
.

The MEL-F-5624 fuel used in this investigationhad the following
characteristicsas determined by standard A.S.T.M. methods:

Boiling Reid vapor Specific Hydrogen- Net heat- Aromatics Olefins
ing value (percent by (percentby

:
range

(°F) ~;~;~;n. ) zj% F ;2;:
Iw

(Btu/lb) volume) volume)

106-556 7. 0.738 0.179 18,900 10 2.5 ‘ ‘“

The fuel was injected through various fuel-injector devices after pass-
ing through a 200-mesh filter screen that removed foreign matter. The
duplex-type pressure-atomizingnozzle and flow-di.vi.derapparatus are
standard for the J35-C-3 ehgine. The different injectors that were
insta2Led in the conbustor in the same relative po~ition
nozzle are:

Simplex injector. - The standard duplex-type nozzle
remo~g_the internal parts and replacing the end of the
with a l/2-inch-diameter standard pipe coupling machined

as the duplex

was ~iedby
nozzle housing
to the same

outer di-kneteras the nozzle, and the simplex-type nozzle was attached
with a suitable reducer. The simplex-type nozzle was a constant-area
single-orificepressure-atomizing nozzle having a 21.5-gallon-per-houx
capacity, rated at 100 pounds per square inch pressure differential,
and a 600-angle holbw-cone spray. I

“Spoke” injector. - A l/2-inch pipe nipple was attached to the
modified-duplex housing already described, and eight l/4-inch-diameter
tubes were arranged as radial spokes on the nipple. Five 0.0135-i.nch-
di.ameterholes were drilled h each ttie to inject fuel at centers of
equal areas. A diagrammatic sketch of this injector is shown in
figure 4(a).

Tube “A” tnjector. - A stainless-steel3/4-inch-diameterWbe WELB
drilled Wth forty 0.0135-inch-diam&er holes to provide the same total
port area as the “spoke” in~ec~or, and the holes were evenly spaced
circumferenti,ald.yat predetermined lengths from the upstresm end of the
tube to maintain the same proportion of total fuel-port area to total
primary-zone-hole area. The prbnsmy-zone-hole area was considered to
be the upstresm one-fourth of the total hole area of the liner. In this
muuaer the fuel-port area was matched with the air-hole area in an
attempt to provide approximately stoichimetric fuel-air mixtures along
the conibustionzone. The exact fuel-air proportions at any given place
in the ccmibustionzone were not calculablebecause the discharge coef-
ficients of the air and fuel ports were not accurately known, because

●

✎

.
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the amoud of air carried upstream by the backflow eddies from the
. dilution to the primary combustion zone was not known, -d because the

fuel diffusion rates were not known. A diagrammatic sketch of this
injector is shown in figure 4(b).

Tube KB”injector. . The tube “B” in~ector was geometrically sti-
ilar to the t~e “A” injector, but the linear hole distribution pattern
was reversed by turni~-end-for-end the in~ector tube, as shown in fig-
ure 4(c). The fuel distribution produced by this injector t~e was
exactly opposite that of ttie ‘~A~’with reference to linear tistance
along the cofiustion zone.

Tribe“C” injector. - The stainless-steel 3/4-inch-diameter tube was
drilled with forty O.0135-inch-diameterholes evenly spaced along the
length af the tube to provide a linear fuel distribution along the com-
bustion zone. A diagrammatic sketch of this injector is shown h
figure 4(d).

. PROCEDURE

The combustion performance was studied by (1) determining altitude.
operational limits and ccndmstion efficiencies at various shulated-
flight conditions, and (2) determining the imfluence of combustor-inlet
air-pressure, temperature, and velocity on conibustionefficiency smd
temperature rise at the standard inlet-air conditions of 620° R and
15 pounds per square inch absolute. These determinations were made
with liqpid MIL-F-5624 fuel and with the f0310wing fuel-injection
devices: standard duplex-type nozzle, simplex-type nozzle, “spoke”
injector, tube “A” imjector, ttie “B” injector, and tube “C” injector.

Estimated ccmibustorinlet-air conditions and conhzstor outlet-gas
temperatures corresponding to zero-rsm operation of the engine at var-
ious altitudes and rotor speeds were obtained from the engine manu-
facturer and are shown in figure 5. These performance curves were used
to establish the conibustoroperating conditions necessary to simulate
engine operation at any desired altitude and rotor speed. Details of

. the operational methods and data-recording procedures me described in
reference 2.

With the use of chsrts given in deference 4, the codmstion
efficiency was ccmputed as the ratio of the measured enthalpy rise
across the combustor to the heati~ value of the fuel. Air refer-
ence velocity values were computed from the maximum cross-sectional

. area of the’combustor flw passage (O.48 square foot), the inlet-air

.
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density, and the total air-flow rate. The thermocouple indications were ._
taken as true values of total temperatures with no correctionsmade for
stagnation or radiation effects.

RESULTS AND DISCUSSION

Altitude Limits sad C!ombusti.onEfficiencies

The data obtained ti.ththe various liquid-fuel injection devices
are summarized in table I. The test runs kbeled “no contnzstion”are
those in which repeated attempts produced no burning at any fuel fkw.
Altitude operational Umits of the single tubular ccmibustorare pre-
sented in figure 6 for each fuel injector investigated. Each curve
separates the region where sufficient combu$tor-outlettemperatures
are attainable from the region where the m%cimum attainable outlet
temperatures are insufficient for nonaccelerating operation of the
engine. A comparison of the altitude operational 13mite obtained is
shown in figure 7. Variation of combustion efficiency with inlet-air
pressure, temperature, and”reference velocity is shown in figures 8,
9, and 10, respectively. The original data (table I) were taken at a
series of fuel-air ratios for each inlet-parametm value studied, and .

the curves of figures 8 to 10 were cross-plotted at 650° and 1200° F
co??ibustortemperature rise from those data.

=---

Liquid-Fuel Distribution

The following discussions are based.’on performance comparisons
obtained at conditions where the ccmibustor-inletvalues are such that
w l?erfo~nce Mferences that do exist sre of sufficient magnitude
to be significant.

There exists a difference, other than fuel distribution,between
the pressue-atomizing nozzles and the so13d-streem fuel injectors
studied. The pressure-atomizing nozzles produced smaller fuel drops
than those that resulted fram the disintegration of a solid fuel stream
as it mixed with the primary air. These smaller drops gave higher
rates of vaporization, and thus allowed more time for mixing and com-
bustion. For this reason these two types of fuel injection willbe
considered separately.

Pressure-atomizing nozzles. - The two pressure-atomizing nozzles
gave approximately the sane altitude operational limits (fig. 7), and
their
ences

combustion efficiency performances showed no consistent &ffer-
(figs. 8, 9, and lO). Inasrmch as the two nozzles differ in

.

.
‘

g

.

.

:
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fuel-spray characteristics,with the duplex providing atomization over a
larger range of fuel flows than the simplex, the lack of consistent
coribustion-efficiencyvalues is understandable.

Solid-stream injectors. - The altitude Operational limits (fig. 7)
of the tube “Atlinjector were 5U10 to 8500 feet higher than those of
the best of the other three solid-stream injectars-except at the highest
simulated rotor speeds. Tribe“B’!gave operating 13mits,nearly identical
to those for tube “A” at rotor speeds above 80-percent rated. The
“spoke” injector, although quite inferior at intermediate simulated
rotor speeds, gave limits 5000 feet above those for tube “A’!at 104 per-
cent normal rated speed. Vsriation in liquid fuel distribution as
providedby the fuel injectors studied does affect altitude operational
13mits, but the effect becomes small at the highest engine rotor speeds
where the engine normally operates. Aposslble explanation of this
rotor-speed effect is that the inlet-air temperature and the te.mperature-
rise requirement have a wide range of values throughout the engine rotor
speeds investigated. The high inlet-air temperatures encount~ed at the
high rotor-speed conditions vaporize the liquid fuel more rapidly and.
may thus diminish the effect of liquid-fuel distribution on altitude
operational limits. Similarly, the high temperature-riserequiraent
demands a larger fuel flow rate, which may decrease the differences in
fuel-injection characteristics of the several inJection detices.

The ccmibustionefficiencies (figs. 8, 9, and ’10)“oftube “A~’were
generally above those of the other stresm injectors at the 1200° F
temperature-rise condition. At the 650° F temperature-rise condition,
however, ttie “B” was generally best and gate efficiencies at ths
8 percent above those for tube “A”. Comparison of the altitude oper-
ational 13mits and caibustion-efficiencyperformance of the.four stream
in~ectors studied shows that tube “A’tprovided the best over-all per-
formance. This result indicates that the opt- fuel distribution is
one which proportions the fuel with the incomhg air to give approxi-
mately stoichiometricmixtures. This conclusion is not strongl.yborne
out by the data, because lxibe~’B”gave better efficiency than ttie “A’!
at some operating conditions and because the differences in performance
of the better injectors were not great at most conditions of operation.

The “spoke” injector provided the lowest combustion efficiencies
of alJ_the injection devices studied. The poor performance shown by
this injector is believed to be due to overrich fuel-air ratios existing
in the hnediate upstream end of the primsry zone. As a result, the
propff fuel-air mixture is not obtained rapidly enough in the primary
zone to allow the establishment of a stable flame in the upstre~ end ~

. of the combustor.

.
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Fuel State

Altitude operational limits of the single ttiular conkustor are
presented in figure 11 for both liqyid and gaseous fuels. The gaseous-
fuel data are tsken from reference 3. These curves represent the best
and the poorest performance l$nits ob@inable with both liquid and
gaseous fuels for all the solid-stream fuel~atterns studied. cOIdms-
tion efficiencies obtained tith.both liquid ~d gaseous fuels operati~
with the sane fuel in~ectors as for figure 11 at various inlet-air
pressures, temperatures, and velocity value$ are shown in figures 12,
13, and 14.

.

The highest limits, by 6000 to 10,000 feet, were obtained with
gaseous-propane fuel and a tube injector. The lowest ltmits were
obtained also tith gaseous fuel smd a single-port injector. The wide
dispersion of limit curves obtained with gaseous fuel shows that fuel

.

distribution has a greater effect on operational-13@t performance with
gaseous fuel than with liqyid fuel.

The conibustion-efficiencyperformance wi.thboth fuels (figs. 11, .

12, and 13) shows that ,thegaseaus-fuel injection (tube sad single
port) provided higher efficiencies than the liquid-fuel inJectors at
most of the conditions investigated. This result inticates that the .

finite t- require$for fuel vaporization, which would reduce the the-”
avaikble for cotiustion, has a measurable effect on ccmibustionper-
formance. . .

From the data presepted hereinzthe conclusion maybe reached that
.

vapor fuel, properly supplied to a combustion chsmber, will give higher
efficiencies,andhigher altitude operational limits than liqtid fuelj
this conclusion must be regarded as tentative because only a limited
nuniberof fuels and fuel-in.lectiondevices have been investigated.
Further, this study has not-included the problem
fuel for a vapor-fed conimstor.

of vaporizi~ liquid

Miscellaneous Obsenations

The tube “B” and tube “C” fuel di~tributions produced rather
violent conibustionpulsations at all fuel-air ratios> and blow-out
frequently occurred even while operating at high combustion efficiency.
Special spark-plug electrode *sios were ~cess~to ~tiate c*us-
tion with the-fuel distribution produced by the solid-stream injectors.
The electrodes of these PIWS were extended.~ to.~ -inche9and bent.to ..
place the electrode gap in a fuel-rich part of the primary zone. No .

appreciable carbon deposits were formed in the codmstlon cwer~
except that a noticeable scale-like film having a tendency to flake was
formed on the tube injectors. ._
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SUMMARY,OFRESUItTS

The results obtained in the investigation of the effect of liqtid
fuel distribution and fuel state on ccmibustionperformance in a single
tubular combustor from a 4000-pound-thrust turbo~et engine are summa-
rized as follows:

1. Distribution of liquid fuel within the primary zone of the tom-
buster affected performance with relation to altitude operational
15mits, but the effect became small at the highest engine rotor speeds.
Fuel distribution had a ~eatec effect on perfarmawe with gaseous
fuel than with ligyid fuel.

2. Of the solid-stresn injectors investigated, the best over-all
performance was obtained with the ixibeinJector that admitted the fuel
through holes matched with the distribution of primary air holes in
the combustor liner so as to protide approximately stoichiometric
proportioning of fuel and air along the length of the conimstor.

CONCLUDING REMARKS

Vapor fuel properly supplied to the combustor gave higher efficienc-
ies and altitude operational klmits than liquid fuel for the types of
fuel and fuel distribution investigated. This indicates that the process
of fuel vaporization is an important caibustor function influencing
ccmimstion performance at high altitudes. It shouldbe pointed out that
a 13mited nuniberof fuel-distribution patterns were investigated and,
further, that methods of providing for prevaporization of liquid fuel
were not studied. Future development of fuel-tnjection technique may
provide better cotiustion p=formance with liqti fuels.

Lewis F~ht Propulsion laboratory,
National Advisory Committee for Aeronautics,

Cleveland, Ohio.
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b Required combustor temperature
rise attainable

❑ Required combustor teqperature
70,000

rise unattainable
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.
g (a) Duplex nozzle.
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(b) S@plex nozzle.

Figure6. - Altitudeoperattonallimitsandcogbyationefficienciesof single
tubularcmbustoroperatingwfthl~quidKU-F-5624fuelinjectedwithsix
fuel-injectordesigns.SimulatedflightMachnumber,O. (Pointnumbers
listedintableI.)
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(d) %poke” inJector.

Figure 6. - Conttiued.P.Ltltu@e operational Mmlts and ccadmstion efficien-
cies of single tdmlsr combuetor uperating withliquidMIL-F-5624fuel
inJectedwithsixfuel-inJectordesigns.SimulatedflightMachnumber,O.
(Pointn-era listedIn tebleI.)
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o Reqtired conibustortemperature rise attainable
❑ Required cm!kmetor temperature rise unattainable
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(e) Tube “B” inJector.

Figure 6. - Continued. Altitude operational Umitx and combustion efficien-
cies of single tubular combustor operating with llquid MIL-F-5624 fuel
injected with six fuel-injector designs. Slmlated flight Mach nuniber,O.
(Point numbers listed in table I.)
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(f) !lMbe “C” injector.

Figure 6. - concluded. Altitude operational 13mits and ccmibustion efficien-
cies of single tubular ccmbustcm operating with liquid MIL-F-5624 fuel
injetted with six fuel-injector designs. Simulated flight Mach number, O.
(Point nunbers listed h table I.)
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Figure 7. - Conrparisonof altitudeoperationallimitsof singletubular
ccmkmstoroperating
different=thods.

with liquid MIL-F-5624 fuel injected by six
Simulated flight Mach number, O.
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Figure .8.-
conibustor
Combuetor

Combuetor Inlet-air static pressure, lb/sq in. abs.

(a) !Wqerature rise, 650° F.

Varfat ion of cmfbuet ion efficiency uith inlet-air static pressure of tubular
operating with liq@a ~F-5624 fuel inJ ect ed by six clifferent methods.
condft ions: t=%==tue, l@ F; v~ocity, 80 feet Per second.
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Combustor Inlet-air static pressure, lb/sq in. abs.

(b) Temperature rise, lZOO” F.

Figure 8. - concluded. Variation of conibustionefficiency with inlet-air static ~es -
sure of tubular mmbuetor operating with liquid MIL-F-56Z4 fuel inJected by six
Mfferent m?thodm. Cmibustor conditions: taqerature, 1.60° F j velocity, 80 feet per
second..
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Corfbustorinlet-air temperature, %?

(a) T~ature rise, 650° F.

Figure 9. - Variation of canbuetion efficiency with inlet-air temperature of tubular
ccnbustor operating with llquid KU-F-5624 fuel I@ected by six diff~snt methods.
Conbustor cond.itio~: pressure, M pounds per square inch absolute~ velocity, W feet
per second.
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(a) Temperature rise, 6S@ F.
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Figure 10. - Varie.tionof combustion efficiencyvith referente vclocity of tubuler
conibuatoroperating with liqpid MILF-5624 fuel inJected by six different methods.
Combuetor conditions: pressure, 15 pounds per square inch .bSdutej temperature, 160° F.
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Combustor reference velocity (based on ~ cross-sectionalarea), ft/I

(b) Temperature rise, MC@ F.

Figure 10. - Concluded. Variation of caubuation efficiencywith rtierence
vel= ity of tubular ccmbuat or operathg with llquitl MIL-F-5624 fuel
Injectedby six differentmethods. Ccmbustor conditions: pressure,
15 pounds per square Inch abaolute~ temperatime,160° -F,
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Combuator inlet-air static pressure, lblsq in. abs.

(b) Temperature rise, 1200° F.

Figure J-2.- Variation of con.ibustionefficiency with inlet-air static pressure of
+@mlar conibustoroperating with llquid MIL-F-5624 and gaseous propane fuels.
Ccdnbuator condltiona: temperature, lSOO l?;velocity, &3 feet psr second.
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100
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. (a) Temperature rise, 650°F. “

Ccmbustor inlet-air temperature, ‘%

(b) Tenrperattierise, 1200° F.

Figure 13. - Variation of combustion efficiency with inlet-air terqperatureof tubular
combustor operating with liquid W-F-3624 and gaaeous propane fuels. Comlnmtor
conditions: pressure, 15 pounds per square inch sbsolute~ velocity, 60 feet per
second.
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Figure 14. - Variation of conibustionefficiency with reference velocity of tub~
cmibustor operating with liquid MIL-F-5624 ad gaseous wopane fuelE. CtiU6tOr
conditions: pressure, 15 pounds per sqtmre inch abeolute~ tempemture, lSOO F.
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